Close

Magic™ Membrane Protein Human KCNJ3 (Potassium inwardly rectifying channel subfamily J member 3) Expressed in vitro E.coli expression system, Full Length (CAT#: MPX1864K)

This product is a Human KCNJ3 membrane protein expressed in vitro E.coli expression system. The protein is for research use only and is not approved for use in humans or in clinical diagnosis.

Product Specifications

  • Host Species
  • Human
  • Target Protein
  • KCNJ3
  • Protein Length
  • Full Length
  • Protein Class
  • Ion channel, Transport
  • TMD
  • 2
  • Sequence
  • MSALRRKFGDDYQVVTTSSSGSGLQPQGPGQDPQQQLVPKKKRQRFVDKNGRCNVQHGNLGSETSRYLSDLFTTLVDLKWRWNLFIFILTYTVAWLFMASMWWVIAYTRGDLNKAHVGNYTPCVANVYNFPSAFLFFIETEATIGYGYRYITDKCPEGIILFLFQSILGSIVDAFLIGCMFIKMSQPKKRAETLMFSEHAVISMRDGKLTLMFRVGNLRNSHMVSAQIRCKLLKSRQTPEGEFLPLDQLELDVGFSTGADQLFLVSPLTICHVIDAKSPFYDLSQRSMQTEQFEIVVILEGIVETTGMTCQARTSYTEDEVLWGHRFFPVISLEEGFFKVDYSQFHATFEVPTPPYSVKEQEEMLLMSSPLIAPAITNSKERHNSVECLDGLDDITTKLPSKLQKITGREDFPKKLLRMSSTTSEKAYSLGDLPMKLQRISSVPGNSEEKLVSKTTKMLSDPMSQSVADLPPKLQKMAGGAARMEGNLPAKLRKMNSDRFT

Product Description

  • Expression Systems
  • in vitro E.coli expression system
  • Tag
  • 10xHis tag at the N-terminus
  • Protein Format
  • Soluble
  • Buffer
  • Tris/PBS-based buffer, 6% Trehalose, pH 8.0

Target

  • Target Protein
  • KCNJ3
  • Full Name
  • Potassium inwardly rectifying channel subfamily J member 3
  • Introduction
  • Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and plays an important role in regulating heartbeat. It associates with three other G-protein-activated potassium channels to form a heteromultimeric pore-forming complex that also couples to neurotransmitter receptors in the brain and whereby channel activation can inhibit action potential firing by hyperpolarizing the plasma membrane. These multimeric G-protein-gated inwardly-rectifying potassium (GIRK) channels may play a role in the pathophysiology of epilepsy, addiction, Down's syndrome, ataxia, and Parkinson's disease. Alternative splicing results in multiple transcript variants encoding distinct proteins.
  • Alternative Names
  • KCNJ3; KGA; GIRK1; KIR3.1; G protein-activated inward rectifier potassium channel 1; GIRK-1; inward rectifier K(+) channel Kir3.1; inward rectifier K+ channel KIR3.1; potassium channel, inwardly rectifying subfamily J member 3; potassium inwardly-rectifying channel subfamily J member 3 splice variant 1e; potassium voltage-gated channel subfamily J member 3; Potassium inwardly rectifying channel subfamily J member 3

Customer reviews and Q&As    

Related Products
Online Inquiry
CONTACT US
USA:
Europe:
Germany:
Call us at:
USA:
UK:
Germany:
Fax:
Email:
Our customer service representatives are available 24 hours a day, 7 days a week. Contact Us
© 2024 Creative Biolabs. | Contact Us