Close

Anti-Alpha-GSA[12,6P] T cell receptor (Va14Vb8.2), pCDTCR1 (TCR-YC0086)

Online Inquiry  Datasheet

All products and services are For Research Use Only and CANNOT be used in the treatment or diagnosis of disease.

The vector of anti-Alpha-GSA[12,6P] T cell receptor (TCR) is constructed for the engineering of T cell to target alpha-GSA[12,6P] restricted by mouse CD1d. The T cells are genetically modified through transduction with a lentiviral vector expressing Alpha-GSA[12,6P]-specific T cell receptor.

Specific Inquiry

  • Size:
  • Marker:
  • Form:
  Add to Cart

Details

  • Target
  • Alpha-GSA[12,6P]
  • Epitope
  • alpha-GSA[12,6P]
  • Format
  • Non-Modified TCR
  • Allele
  • mouse CD1d
  • Vector Name
  • pCDTCR1
  • Vector Length
  • ~ 8 kb
  • Vector Type
  • Lentiviral vector
  • TCR Clone
  • Va14Vb8.2
  • Host Species
  • Mouse

Target

  • Introduction
  • The TCR receptor complex is an octomeric complex of variable TCR receptor α and β chains with three dimeric signaling modules CD3δ/ε, CD3γ/ε and CD247 ζ/ζ or ζ/η. Ionizable residues in the transmembrane domain of each subunit form a polar network of interactions that hold the complex together. Since the cytoplasmic tail of the TCR is extremely short, making it unlikely to participate in signaling, these signaling molecules are vital in propagating the signal from the triggered TCR into the cell. Each T cell expresses clonal TCRs which recognize specific peptide/MHC complex during physical contact between T cell and antigen-presenting cell-APC (MHC class II) or any other cell type (MHC class I) High on-rate and off-rate is characteristic for TCR and peptide/MHC interaction at physiological temperature. TCRs have very high degree of antigen specificity, despite of fact that the affinity to the peptide/MHC ligand is in the micromolar range. This weak binding between TCR and peptide/MHC was determined by the surface plasmon resonance (SPR) to be in the range 1-100 μM, the association constant in the range from 1000 to 10000 M⁻¹s⁻¹, The TCR affinity for peptided/MHC has a direct impact on modulation of T-cell function. T cells are very sensitive to their antigens despite the low affinity of TCR for its peptide/MHC and low numbers of specific peptide/MHC on the surface of target cells. The specific and efficient signaling via TCR might be regulated by dynamic oligomerization into TCR microclusters on the surface of T cells. In this scenario, T-cell sensitivity to antigen could be increased via avidity-based mechanism. The antigen sensitivity is higher in antigen-experienced T cells than in naive T cells. Naive T cells pass through the process of functional avidity maturation with no change in affinity. It is based on the fact that effector and memory (antigen-experienced) T cell are less dependent on costimulatory signals and higher antigen concentration than naive T cell.

Customer Reviews and Q&As

There are currently no customer reviews or questions for Mouse anti-Alpha-GSA[12,6P] T cell receptor (Va14Vb8.2), pCDTCR1 (TCR-YC0086). Click the button below to contact us or submit your feedback about this product.

For research use only. Not intended for any clinical use. No products from Creative Biolabs may be resold, modified for resale or used to manufacture commercial products without prior written approval from Creative Biolabs.

Related Products

Online Inquiry

For any technical issues or product/service related questions, please leave your information below. Our team will contact you soon.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Key Updates
Newsletter NEWSLETTER

The latest newsletter to introduce the latest breaking information, our site updates, field and other scientific news, important events, and insights from industry leaders

LEARN MORE NEWSLETTER
New Solution NEW SOLUTION

CellRapeutics™ In Vivo Cell Engineering: One-stop in vivo T/B/NK cell and macrophage engineering services covering vectors construction to function verification.

LEARN MORE SOLUTION
NOVEL SOLUTION NOVEL TECHNOLOGY

Silence™ CAR-T Cell: A novel platform to enhance CAR-T cell immunotherapy by combining RNAi technology to suppress genes that may impede CAR functionality.

LEARN MORE NOVEL TECHNOLOGY
NEW TECHNOLOGY NEW SOLUTION

Canine CAR-T Therapy Development: From early target discovery, CAR design and construction, cell culture, and transfection, to in vitro and in vivo function validation.

LEARN MORE SOLUTION
Receive our latest news and insights.